

eXecute-in-Place for Low-Power IoT and Instant-on Smart Devices (Preview)

Willis Chang, Adesto Applications, APAC

3600 Peterson Way • Santa Clara, California 95054 www.adestotech.com

Short history of NVM in embedded systems

In the beginning...

- Byte-wide ROM and EPROM were used as the Non-Volatile Memory in most embedded systems
- Parallel NOR Flash devices were introduced in the late 80s and gradually replaced their predecessors
- Typical use case was eXecute-in-Place (XiP)
 - Though, that term did not exist at that time
 - Four byte-wide Flash devices typically created a 32-bit wide bus for the CPU
 - Latency and throughput delivered by the Flash array were sufficient for the fastest CPUs of that era

Faster PCs changed the picture

- The speed of CPUs ramped up beyond 1GHz
 - While NOR Flash devices could not keep up with these frequencies
 - · XiP was abandoned and application code was now running from DRAM
 - NOR Flash was relegated to only support the system-boot operation
- In this new world, the speed of the Flash device was no longer important
 - Upon start-up, hardware would copy the contents of the Flash to DRAM and the Flash would not be needed until the next boot sequence
 - Atmel and later other suppliers came up with the Serial Flash
 - Smaller footprint and lower cost than parallel NORs
 - But, delivering much lower data throughput
 - Still, this was good enough for the new role of the Flash device

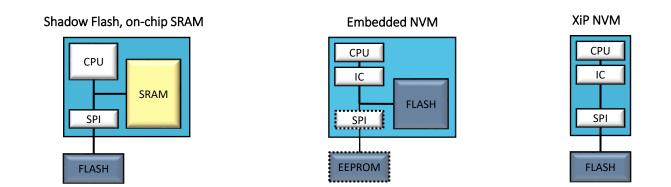
What's important in IoT and modern embedded systems

Performance

Though small, these systems' complex communications
protocols require significant processing horsepower

Power

- When compared to IoT devices, phones which used to be the poster child of low-power are considered power-hogs
- IoT devices typically are in deep-sleep most of the time, but when up, they need to deliver high performance


And of-course, cost, cost, and cost

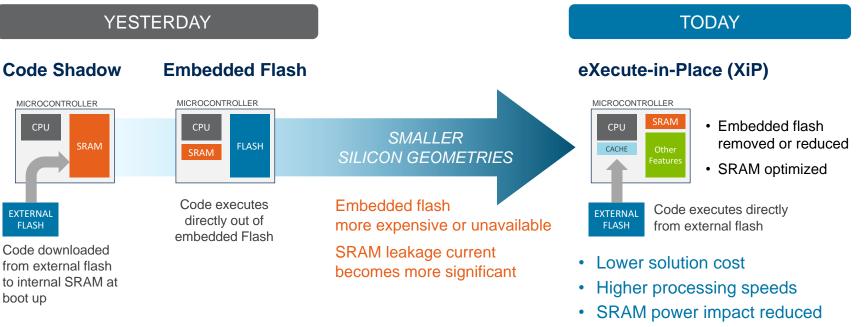
- Cost of design
- Cost of mask sets
- Cost of silicon

Today's IoT systems: one of three architectures

- Shadow Flash: Upon boot, the code is copied to and executed from an internal SRAM (or external DRAM)
- Embedded NVM: Flash device is part of the IoT SOC, code is executed directly out of it
- XiP: Code executed directly from an external NOR Flash

Combinations of these basic architectures are gaining momentum

The problem


Class of devices requiring intelligent local data processing capability

- Relatively large program memory
- Higher performance time critical applications
- Embedded flash only addresses low- to mid-range products
 - Limited scalability
 - Limited memory
 - Higher cost SoCs as a result of more expensive and "shrink-resistant" silicon process
- External DRAMs address only the highest-end products
- Existing solutions are power-hungry, performance-limiting and expensive

The need for eXecute-in-Place

microcontrollers removing / reducing embedded flash

• "Instant On" capabilities

The solution

- An NVM device designed specifically for eXecute-in-Place
 - High enough bandwidth on the interface between the Flash and the SoC
 - Optimized to deliver performance in cached-based CPUs
 - Easy handling of Over-The-Air (OTA) updates
 - Low power consumption in fetch (read) operations
 - Power down modes to support down-times of the IoT device
- The rest of this presentation will show:
 - How to handle each of the above design targets
 - Adesto's EcoXiP family of NVM devices for XiP applications
 - Performance and power characteristics of the EcoXiP when operating with NXP's i.MX RT1050

Attend the session to learn more!

CONFIDENTIAL - © 2019 Adesto XiP for Smart Devices